skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guha, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explore the use of a spatial mode sorter to image a nanomechanical resonator, with the goal of studying the quantum limits of active imaging and extending the toolbox for optomechanical force sensing. In our experiment, we reflect a Gaussian laser beam from a vibrating nanoribbon and pass the reflected beam through a commercial spatial mode demultiplexer (Cailabs Proteus). The intensity in each demultiplexed channel depends on the mechanical modeshapes and encodes information about their displacement amplitudes. As a concrete demonstration, we monitor the angular displacement of the ribbon’s fundamental torsion mode by illuminating in the fundamental Hermite-Gauss mode ( HG 00 ) and reading out in the HG 10 mode. We show that this technique permits readout of the ribbon’s torsional vibration with a precision near the quantum limit. Our results highlight new opportunities at the interface of quantum imaging and quantum optomechanics. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Continuous-time Markov decision processes (CTMDPs) are canonical models to express sequential decision-making under dense-time and stochastic environments. When the stochastic evolution of the environment is only available via sampling, model-free reinforcement learning (RL) is the algorithm-of-choice to compute optimal decision sequence. RL, on the other hand, requires the learning objective to be encoded as scalar reward signals. Since doing such transla- tions manually is both tedious and error-prone, a number of techniques have been proposed to translate high-level objec- tives (expressed in logic or automata formalism) to scalar re- wards for discrete-time Markov decision processes. Unfortu- nately, no automatic translation exists for CTMDPs. We consider CTMDP environments against the learning objectives expressed as omega-regular languages. Omega- regular languages generalize regular languages to infinite- horizon specifications and can express properties given in popular linear-time logic LTL. To accommodate the dense- time nature of CTMDPs, we consider two different semantics of omega-regular objectives: 1) satisfaction semantics where the goal of the learner is to maximize the probability of spend- ing positive time in the good states, and 2) expectation seman- tics where the goal of the learner is to optimize the long-run expected average time spent in the “good states” of the au- tomaton. We present an approach enabling correct translation to scalar reward signals that can be readily used by off-the- shelf RL algorithms for CTMDPs. We demonstrate the effec- tiveness of the proposed algorithms by evaluating it on some popular CTMDP benchmarks with omega-regular objectives. 
    more » « less